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Red algae (and marine organisms that feed on red algae) of thealcohol with TBSCI and pyridine afforde@ in 85% yield?” The

Laurenciaspecies produce a variety£acetogenenins containing
halogenated medium-ring ethérRepresentative examples, such
as (+)-laurencin and-)-obtusenyne, have stimulated a significant
level of effort for construction of oxocenes and oxominst)-
Brasilenyne 1), an antifeedant isolated from sea haflf/sia
brasiliana) by Fenical, et al. in 1979has a novel nine-membered
cyclic ether skeleton containing a i¢&,cis-diene unit which
presents a formidable synthetic challefigerecent disclosure from

stereogenic center at the propargylic position was introduced by
Lewis-acid-mediated ring opening & with bis(trimethylsilyl)-
acetylene. Orienting experiments employed T&3 the Lewis acid

by a procedure similar to the ring opening of acetal templates
developed by Johnson, et %l.Gratifyingly, ring opening of
dioxolanones proceeded smoothly to afford the desired compound
5 and ring-opened methyl ester ®fafter quenching with MeOH).
Furthermore, treatment of the crude mixture with a catalytic amount

these laboratories described the sequential ring-closing metathesisjf p-TsOH in refluxing benzene gav&in 86% yield as a single

silicon-assisted intramolecular cross-coupling for the construction
of medium-sized, carbo- and heterocyclic rings bearing @it,&is-
diene unit? By applying this reaction as a key strategic element,
we report herein the first, total synthesis df)(brasilenyne.

The retrosynthetic plan is outlined in Scheme 1. Simplification
of the enyne side chain and chloride functionality4n){1 reduces
the challenge to the intermedia2e which was projected to arise
from palladium-catalyzed, silicon-assisted intramolecular cross-
coupling of 3. The hydroxy group liberated in the cross-coupling
is perfectly situated for installation of the chlorine. Alkenylsilyl
ether3 would arise from diastereoselective allylation of aldehyde
4 and application of ring-closing metathesis (RCM) of a vinyl
alkenylsilyl ether derivative. The aldehydecould be elaborated
from 5 in which the propargylic stereogenic center would be set
by the diastereoselective ring opening of a 1,3-dioxolanone, with
bis(trimethylsilyl)acetylene. Thus, the C(2) and C(8) stereocenters
were to be installed by reactions controlled by the C(9) center from
malic acid.

Scheme 1
intramolecular
cross-coupling
— »

= How

ring-closing
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L-malic acid OPMB 4

The synthesis of advanced intermediateegan by condensation
of commercially available-(S-malic acié with propanal promoted
by BR:-Et,O to afford the 1,3-dioxolanone as a 7/3 mixture of cis
and trans isomers (Scheme 2). Selective reduction of the carboxylic
acid using BH-THF at 0°C followed by protection of the primary
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diastereomer. The results strongly suggested that (1) the mechanism
of ring opening of the dioxolanone proceeds through an oxocar-
benium ion intermediate and (2) the high diastereoselectivity of
the ring-opening process was controlled by the stereogenic center
of the malic acid residug®

Conversion of the trimethylsilyl alkyne to iodidewas efficiently
accomplished by treatment &f with N-iodosuccinimide with a
catalytic amount of silver nitrate in DMP. Furthermore, cis
reduction of 7 with potassium azodicarboxylate gave the geo-
metrically definedz-alkenyl iodide8 in 80% yield!? Elaboration
of 8 into aldehyde4 began with the transformation of the lactone
unit into a Weinreb amid& Further protection of the hydroxy group
with PMBCI afforded 9 in 82% yield!* Reduction of9 with
DIBAL-H at low temperature provided aldehydein 87% yield.

The next critical stage was to introduce the third stereogenic
center ofl. Diastereoselective allylation ef by a nonchelation-
controlled addition afforded only a modest level of stereocontrol.
The successful generation of homoallylic alcoh@lwas ultimately
achieved by employing a chiral allylborane reagent developed by
Brown, et al'® Treatment of4 with allylB('Ipc), generated in situ
from (+)-B-chlorodiisopinocampheylborane afford&@ in 72%
yield with 93/7 diastereoselectivity. Furthermore, an improvement
of yield (89%) and selectivityX97/3) were secured by use of kg
salt-free conditions at-100 °C.16°

With 10 in hand, the stage was set for implementation of the
key RCM/cross-coupling sequence. Thus, silylation16fwith
chlorodimethylvinylsilane provided the vinyl silyl ether, which was
subjected to the RCM reaction with Schrock's molybdenum
complex as the cataly$t.By using 5.0 mol % of that catalyst, the
ring-closure went to completion efficiently in 92% yield. The crucial
nine-membered ring-forming reaction was carried out with 7.5 mol
% of [allylPdCI], as the catalyst and 10 equiv of TBAF as activator
using syringe-pump additiorf. The intramolecular cross-coupling
proceeded smoothly to afford the corresponding nine-membered
ether2 in 61% vyield.

Elaboration of the enyne side chain began by the protection of
the hydroxy group with TBSOTf using pyridine and a catalytic
amount of DMAP (88%). Further, deprotection of the PMB group
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aConditions: (a) propanal, BFEL,O, ELO, —30°C to rt, 2 h, 85%; (b)
BH3 THF, THF, 0°C, 3 h, 82%; (c) TBSCI, pyridine, Cil,, rt, 4 h,
85%; (d) (1) bis(trimethylsilyl)acetylene, TigICH,Cl;, =73 °C, 3 h then
(2) p-TSA (1 mol %), benzene, DeaiStark, 1 h, 86%; (eN-iodosuccin-
imide, AgNG; (10 mol %), DMF, rt, 10 min, 95%; (f) KGCN=NCOxK,
AcOH, THFA-PrOH, rt, 6 h, 80%; (g) MeOMeNHHCI, AlMes, CH.Cly, 0
°Ctort, 1 h, 93%; (h) PMBCI, AgO, CHCly, rt, 24 h, 82%; (i) DIBAL-
H, CH.Cl,, —73°C, 3 h, 87%; (j) allylB{lpc),, EtO, —100°C, 2 h, 89%;
(k) chlorodimethylvinylsilane, BN, CHxCly, 0 °C to rt, 30 min, 91%; (I)
Schrock’s catalyst (5 mol %), benzene, rt, 1 h, 92%; (m) [allyIPg(]5
mol %), TBAF, rt, 60 h, 61%. (n) TBSOTf, pyridine, DMAP (10 mol %),
CHJCl,, 0 °C to rt, 2 h, 88%; (0) DDQ, CkCI/H,0O (19/1), rt, 30 min,
84%; (p) DessMartin periodinane, CbCly, rt, 2 h, 83%; (q) 1,3-
bis(triisopropylsilyl)propynen-BuLi, THF, —74°Cto rt, 8 h, 83% Z/E =
6/1); () TBAF, THF, 0°C, 1.5 h, 93%; (s) CGJ (n-Oct)P, toluene, 66
65 °C, 12 h, 92%.

with DDQ*® followed by oxidation with DessMartin periodinan®
afforded11in 61% overall yield from coupling produgt Peterson-
type olefinatio® was employed to introduce the requirggtnyne
side chain. Treatment afl with lithiated 1,3-bis(triisopropyl)-
propyne at low temperature followed by slowly warming the
solution to room temperature produced the enyne in 83% yield as
a ca. 6/1Z/E mixture of geometrical isomers. Subsequently, removal
of the TBS as well as the TIPS groups with TBAF afforded the
hydroxy enynel2in 93% yield. Finally, inversion of B-hydroxy
group into the &chloride using CCJ(n-Oct)P* completed the
total synthesis oft)-brasilenynel. The spectroscopic and analyti-
cal data from the synthetic sample were identical in all respects
(mp, 'H NMR, C NMR, IR, and p]?%) to those reported for
natural (+)-brasilenyne.

In conclusion, the first total synthesis of \-brasilenyne has been
accomplished in 19 steps (5.1% overall) fror(S)-malic acid. The
synthesis features the sequential RCM/silicon-assisted intramo-
lecular cross-coupling method for construction of a medium-sized
ring ether bearing a 1;8is,cis-diene unit. Extension of this strategy
to the synthesis of other medium-sized ring and macrocyclic
compounds is under active study.
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